Spatial Modelling of Concentration in Topsoil Using Random and Systematic Uncertainty Components: Comparison against Established Techniques

نویسندگان

چکیده

The assessment of contaminated land often requires the collection and analysis soil samples discrete or continuous modeling contamination. involves interpolating analyte concentrations between sampled positions. contamination can be expressed either as a map showing spatial distribution across site, frequency distribution, both which compared with threshold. characterization is affected by random systematic uncertainty components sampling, chemical analysis, sampling positioning modeling. This work describes application comparison three techniques for developing models site supported quantification none, some all relevant components. 7.3 ha was characterized using 100 lead modeled “inverse distance weighting” (IDW), “ordinary kriging”(OK) new Monte Carlo simulation method (MCM). IDW only uses positions without their uncertainty. OK also “measurement error” other parameters to select variogram. MCM measurement (including effects arising from analysis) ‘GPS coordinates uncertainty’. measurements Pb concentration were log-normally distributed, therefore log-transformed prior output against model ‘probabilistic block mapping’ (PBM) that considers produced smoothed variation appears more realistic. However, underestimate contamination, while prediction most closely matches measured including impact allowed metrologically sound linear interpolation data reduced subjectivity. Both PBM made realistic estimates proportion over threshold included in modeling, respectively. identifies areas where true value contaminant could exceed value, even though single did not.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Monte Carlo and Fuzzy Techniques in Uncertainty Modelling

The standard reference in uncertainty modelling is the “Guide to the Expression of Uncertainty in Measurement (GUM)”. GUM groups the occurring uncertain quantities into “Type A” and “Type B”. Uncertainties of “Type A” are determined with the classical statistical methods, while “Type B” is subject to other uncertainties like experience with and knowledge about an instrument. Both types of uncer...

متن کامل

assessment of deep word knowledge in elementary and advanced iranian efl learners: a comparison of selective and productive wat tasks

testing plays a vital role in any language teaching program. it allows teachers and stakeholders, including program administrators, parents, admissions officers and prospective employers to be assured that the learners are progressing according to an accepted standard (douglas, 2010). the problems currently facing language testers have both practical and theoretical implications but the first i...

using game theory techniques in self-organizing maps training

شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analytical Letters

سال: 2022

ISSN: ['0003-2719', '1532-236X']

DOI: https://doi.org/10.1080/00032719.2022.2050383